Copied to
clipboard

G = C14×C8⋊C22order 448 = 26·7

Direct product of C14 and C8⋊C22

direct product, metabelian, nilpotent (class 3), monomial, 2-elementary

Aliases: C14×C8⋊C22, C568C23, C28.82C24, C8⋊(C22×C14), D83(C2×C14), (C2×D8)⋊11C14, (C14×D8)⋊25C2, C4.66(D4×C14), (C2×C56)⋊29C22, SD161(C2×C14), (C2×SD16)⋊4C14, C28.329(C2×D4), (C2×C28).525D4, (C7×D4)⋊13C23, (C7×D8)⋊19C22, D42(C22×C14), C4.5(C23×C14), (C7×Q8)⋊12C23, Q82(C22×C14), C23.50(C7×D4), (C14×SD16)⋊15C2, (C22×D4)⋊11C14, (D4×C14)⋊66C22, M4(2)⋊3(C2×C14), (C2×M4(2))⋊3C14, (Q8×C14)⋊54C22, C22.23(D4×C14), (C14×M4(2))⋊13C2, (C2×C28).975C23, (C7×SD16)⋊17C22, (C22×C14).172D4, C14.203(C22×D4), (C7×M4(2))⋊29C22, (C22×C28).465C22, (C2×C8)⋊2(C2×C14), (D4×C2×C14)⋊26C2, C2.27(D4×C2×C14), C4○D44(C2×C14), (C14×C4○D4)⋊27C2, (C2×C4○D4)⋊11C14, (C2×D4)⋊15(C2×C14), (C2×Q8)⋊14(C2×C14), (C2×C4).136(C7×D4), (C2×C14).419(C2×D4), (C7×C4○D4)⋊24C22, (C2×C4).45(C22×C14), (C22×C4).76(C2×C14), SmallGroup(448,1356)

Series: Derived Chief Lower central Upper central

C1C4 — C14×C8⋊C22
C1C2C4C28C7×D4C7×D8C7×C8⋊C22 — C14×C8⋊C22
C1C2C4 — C14×C8⋊C22
C1C2×C14C22×C28 — C14×C8⋊C22

Generators and relations for C14×C8⋊C22
 G = < a,b,c,d | a14=b8=c2=d2=1, ab=ba, ac=ca, ad=da, cbc=b3, dbd=b5, cd=dc >

Subgroups: 530 in 298 conjugacy classes, 162 normal (30 characteristic)
C1, C2, C2, C2, C4, C4, C4, C22, C22, C22, C7, C8, C2×C4, C2×C4, C2×C4, D4, D4, Q8, Q8, C23, C23, C14, C14, C14, C2×C8, M4(2), D8, SD16, C22×C4, C22×C4, C2×D4, C2×D4, C2×D4, C2×Q8, C4○D4, C4○D4, C24, C28, C28, C28, C2×C14, C2×C14, C2×C14, C2×M4(2), C2×D8, C2×SD16, C8⋊C22, C22×D4, C2×C4○D4, C56, C2×C28, C2×C28, C2×C28, C7×D4, C7×D4, C7×Q8, C7×Q8, C22×C14, C22×C14, C2×C8⋊C22, C2×C56, C7×M4(2), C7×D8, C7×SD16, C22×C28, C22×C28, D4×C14, D4×C14, D4×C14, Q8×C14, C7×C4○D4, C7×C4○D4, C23×C14, C14×M4(2), C14×D8, C14×SD16, C7×C8⋊C22, D4×C2×C14, C14×C4○D4, C14×C8⋊C22
Quotients: C1, C2, C22, C7, D4, C23, C14, C2×D4, C24, C2×C14, C8⋊C22, C22×D4, C7×D4, C22×C14, C2×C8⋊C22, D4×C14, C23×C14, C7×C8⋊C22, D4×C2×C14, C14×C8⋊C22

Smallest permutation representation of C14×C8⋊C22
On 112 points
Generators in S112
(1 2 3 4 5 6 7 8 9 10 11 12 13 14)(15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98)(99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 74 36 15 54 106 63 94)(2 75 37 16 55 107 64 95)(3 76 38 17 56 108 65 96)(4 77 39 18 43 109 66 97)(5 78 40 19 44 110 67 98)(6 79 41 20 45 111 68 85)(7 80 42 21 46 112 69 86)(8 81 29 22 47 99 70 87)(9 82 30 23 48 100 57 88)(10 83 31 24 49 101 58 89)(11 84 32 25 50 102 59 90)(12 71 33 26 51 103 60 91)(13 72 34 27 52 104 61 92)(14 73 35 28 53 105 62 93)
(1 47)(2 48)(3 49)(4 50)(5 51)(6 52)(7 53)(8 54)(9 55)(10 56)(11 43)(12 44)(13 45)(14 46)(15 99)(16 100)(17 101)(18 102)(19 103)(20 104)(21 105)(22 106)(23 107)(24 108)(25 109)(26 110)(27 111)(28 112)(29 36)(30 37)(31 38)(32 39)(33 40)(34 41)(35 42)(57 64)(58 65)(59 66)(60 67)(61 68)(62 69)(63 70)(71 98)(72 85)(73 86)(74 87)(75 88)(76 89)(77 90)(78 91)(79 92)(80 93)(81 94)(82 95)(83 96)(84 97)
(15 94)(16 95)(17 96)(18 97)(19 98)(20 85)(21 86)(22 87)(23 88)(24 89)(25 90)(26 91)(27 92)(28 93)(71 103)(72 104)(73 105)(74 106)(75 107)(76 108)(77 109)(78 110)(79 111)(80 112)(81 99)(82 100)(83 101)(84 102)

G:=sub<Sym(112)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,74,36,15,54,106,63,94)(2,75,37,16,55,107,64,95)(3,76,38,17,56,108,65,96)(4,77,39,18,43,109,66,97)(5,78,40,19,44,110,67,98)(6,79,41,20,45,111,68,85)(7,80,42,21,46,112,69,86)(8,81,29,22,47,99,70,87)(9,82,30,23,48,100,57,88)(10,83,31,24,49,101,58,89)(11,84,32,25,50,102,59,90)(12,71,33,26,51,103,60,91)(13,72,34,27,52,104,61,92)(14,73,35,28,53,105,62,93), (1,47)(2,48)(3,49)(4,50)(5,51)(6,52)(7,53)(8,54)(9,55)(10,56)(11,43)(12,44)(13,45)(14,46)(15,99)(16,100)(17,101)(18,102)(19,103)(20,104)(21,105)(22,106)(23,107)(24,108)(25,109)(26,110)(27,111)(28,112)(29,36)(30,37)(31,38)(32,39)(33,40)(34,41)(35,42)(57,64)(58,65)(59,66)(60,67)(61,68)(62,69)(63,70)(71,98)(72,85)(73,86)(74,87)(75,88)(76,89)(77,90)(78,91)(79,92)(80,93)(81,94)(82,95)(83,96)(84,97), (15,94)(16,95)(17,96)(18,97)(19,98)(20,85)(21,86)(22,87)(23,88)(24,89)(25,90)(26,91)(27,92)(28,93)(71,103)(72,104)(73,105)(74,106)(75,107)(76,108)(77,109)(78,110)(79,111)(80,112)(81,99)(82,100)(83,101)(84,102)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,74,36,15,54,106,63,94)(2,75,37,16,55,107,64,95)(3,76,38,17,56,108,65,96)(4,77,39,18,43,109,66,97)(5,78,40,19,44,110,67,98)(6,79,41,20,45,111,68,85)(7,80,42,21,46,112,69,86)(8,81,29,22,47,99,70,87)(9,82,30,23,48,100,57,88)(10,83,31,24,49,101,58,89)(11,84,32,25,50,102,59,90)(12,71,33,26,51,103,60,91)(13,72,34,27,52,104,61,92)(14,73,35,28,53,105,62,93), (1,47)(2,48)(3,49)(4,50)(5,51)(6,52)(7,53)(8,54)(9,55)(10,56)(11,43)(12,44)(13,45)(14,46)(15,99)(16,100)(17,101)(18,102)(19,103)(20,104)(21,105)(22,106)(23,107)(24,108)(25,109)(26,110)(27,111)(28,112)(29,36)(30,37)(31,38)(32,39)(33,40)(34,41)(35,42)(57,64)(58,65)(59,66)(60,67)(61,68)(62,69)(63,70)(71,98)(72,85)(73,86)(74,87)(75,88)(76,89)(77,90)(78,91)(79,92)(80,93)(81,94)(82,95)(83,96)(84,97), (15,94)(16,95)(17,96)(18,97)(19,98)(20,85)(21,86)(22,87)(23,88)(24,89)(25,90)(26,91)(27,92)(28,93)(71,103)(72,104)(73,105)(74,106)(75,107)(76,108)(77,109)(78,110)(79,111)(80,112)(81,99)(82,100)(83,101)(84,102) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14),(15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98),(99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,74,36,15,54,106,63,94),(2,75,37,16,55,107,64,95),(3,76,38,17,56,108,65,96),(4,77,39,18,43,109,66,97),(5,78,40,19,44,110,67,98),(6,79,41,20,45,111,68,85),(7,80,42,21,46,112,69,86),(8,81,29,22,47,99,70,87),(9,82,30,23,48,100,57,88),(10,83,31,24,49,101,58,89),(11,84,32,25,50,102,59,90),(12,71,33,26,51,103,60,91),(13,72,34,27,52,104,61,92),(14,73,35,28,53,105,62,93)], [(1,47),(2,48),(3,49),(4,50),(5,51),(6,52),(7,53),(8,54),(9,55),(10,56),(11,43),(12,44),(13,45),(14,46),(15,99),(16,100),(17,101),(18,102),(19,103),(20,104),(21,105),(22,106),(23,107),(24,108),(25,109),(26,110),(27,111),(28,112),(29,36),(30,37),(31,38),(32,39),(33,40),(34,41),(35,42),(57,64),(58,65),(59,66),(60,67),(61,68),(62,69),(63,70),(71,98),(72,85),(73,86),(74,87),(75,88),(76,89),(77,90),(78,91),(79,92),(80,93),(81,94),(82,95),(83,96),(84,97)], [(15,94),(16,95),(17,96),(18,97),(19,98),(20,85),(21,86),(22,87),(23,88),(24,89),(25,90),(26,91),(27,92),(28,93),(71,103),(72,104),(73,105),(74,106),(75,107),(76,108),(77,109),(78,110),(79,111),(80,112),(81,99),(82,100),(83,101),(84,102)]])

154 conjugacy classes

class 1 2A2B2C2D2E2F···2K4A4B4C4D4E4F7A···7F8A8B8C8D14A···14R14S···14AD14AE···14BN28A···28X28Y···28AJ56A···56X
order1222222···24444447···7888814···1414···1414···1428···2828···2856···56
size1111224···42222441···144441···12···24···42···24···44···4

154 irreducible representations

dim11111111111111222244
type++++++++++
imageC1C2C2C2C2C2C2C7C14C14C14C14C14C14D4D4C7×D4C7×D4C8⋊C22C7×C8⋊C22
kernelC14×C8⋊C22C14×M4(2)C14×D8C14×SD16C7×C8⋊C22D4×C2×C14C14×C4○D4C2×C8⋊C22C2×M4(2)C2×D8C2×SD16C8⋊C22C22×D4C2×C4○D4C2×C28C22×C14C2×C4C23C14C2
# reps1122811661212486631186212

Matrix representation of C14×C8⋊C22 in GL6(𝔽113)

11200000
01120000
004000
000400
000040
000004
,
11220000
11210000
000010
00000112
000100
001000
,
11200000
11210000
001000
00011200
00000112
00001120
,
11200000
01120000
001000
000100
00001120
00000112

G:=sub<GL(6,GF(113))| [112,0,0,0,0,0,0,112,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[112,112,0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,112,0,0],[112,112,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,112,0,0,0,0,0,0,0,112,0,0,0,0,112,0],[112,0,0,0,0,0,0,112,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,112,0,0,0,0,0,0,112] >;

C14×C8⋊C22 in GAP, Magma, Sage, TeX

C_{14}\times C_8\rtimes C_2^2
% in TeX

G:=Group("C14xC8:C2^2");
// GroupNames label

G:=SmallGroup(448,1356);
// by ID

G=gap.SmallGroup(448,1356);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-7,-2,-2,1597,4790,14117,7068,124]);
// Polycyclic

G:=Group<a,b,c,d|a^14=b^8=c^2=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c=b^3,d*b*d=b^5,c*d=d*c>;
// generators/relations

׿
×
𝔽